CONCRETE TRIAL MIX DATA | Watershed | | | Subwatershed | | | | | |--|---|--|---------------------------------------|-----------------------------------|--|---------|--| | | | | | | _ Class of concrete | | | | Ву | | | | | _ Date | | | | W/C (strength) | | | | | gal/bag Use W/C gal/baq
_ Air content | | | | Slump range in. | | in. Type of ceme | Type of cement | | | | | | | | ıt e | | | | | | | | 33 3 | | | | 33 3 | | | | | | | | | | | | | | (1) | (2) | (3) | 4 | (5) | 6 | | | Materials | Batch
quantity
(Ib) | Specific
gravity ¹ | Solid
volume
(ft ³) | Weight/bag
of batch
(Ib) | Weight/
yd ³
(lb) | Remarks | | | Cement | | 3.15 | | | | | | | Water | | 1.00 | | | | | | | Fine aggregate
(SSD) ^z | | | | | | | | | Coarse aggregate
(SSD) ² | | | | | | | | | Air _ | ir oz | | | Total solid volume of material | Measured slump | | in. Meas | ured air | % | Workability | | | | | | | | | | | | | Unit weight of concr | ete = Weight of
Volu | me of container | = | = | lb/ft ³ | | | | | | | | | | | | | Valume of batch = | Total weight of | batch
pacrete = | = | $\frac{\text{ft}^3}{43.643} = {}$ | yd ³ | | | | | Onit weight or co | oncrete | 27 1 | rts/yas | | | | | Volume of air = Va | nlume of batch (ft | 3) - Solid volume of | ingredients = | _ | = f | , 3 | | | volumo al an | | . j dana volamo or | | | | • | | | Volu | me of air (ft³) | V 400 | V 400 | - | | | | | Air content = ${Volum}$ | e of batch (ft ³) | X 100 = - | X 100 = | % | | | | | , | /alumas af hostale (| r. 31 | | | | | | | Concrete yield = $\frac{V}{NL}$ | nuper of cameuf | ft ³)
bags = | = | ft ³ /cement | bag | | | | | | | | | | | | | Cement factor = 🗸 | $\frac{27 \text{ ft}^3/\text{yd}^3}{\text{fold. (ft}^3/\text{hag.)}} = -$ | | = | _ bags/yd³ | | | | | '' | leid (it-/ bdg) | | | | | | | | Water = Water (lb/ | yd^3 = | = | nal/vd ³ | 3 | | | | | 8.34 lb/ | gal | | gu/ yu | | | | | | _ | . Weight of t | fine aggregate | | V 400 | _ | | | | rine aggregate conte | ent = Total weight | fine aggregate
L of aggregate X 100 |) = | - x 100 = | % | Col. 1 — Weight of moterials used in trial mixture | | | | (Col. 1)(94) | | | | Col. 2 – Specific gravity of materials Col. 3 – Absolute volume = $\frac{\text{weight}}{(\text{Sp. Gr.})(62.4)}$ Col. 4 – $\frac{(\text{Col. 1})(94)}{\text{Weight of cement used}}$ Col. 5 – (Col. 4)(cement factor), or $\frac{\text{Col. 1}}{\text{Volume batch (yd}^3)}$ ¹ Specific gravity and absorption of coarse aggregates (from ASTM C-127). Specific gravity and absorption of fine aggregates (from ASTM C-128). ² Saturated surface dry.